新万博体育下载_万博体育app【投注官网】

图片
奥数网
全国站

奥数 > 小学资源库 > 奥数知识点 > 数论问题 > 余数问题 > 正文

数论问题之余数问题:余数问题练习题含答案(2)

2011-06-14 16:43:43      下载试卷

  11.除以99,余数是______.

  分析:所求余数与19×100,即与1900除以99所得的余数相同,因此所求余数是19.

  12.求下列各式的余数:

  (1)2461×135×6047÷11

  (2)19992000÷7

  分析:(1)5;(2)1999÷7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000÷3 余2 可以得到42000除以7 的余数是2,故19992000÷7的余数是2 .

  13.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果

  分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .

  14.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

  分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

  101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

  15.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.

  分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.

  16.除以99的余数是______.

  分析:所求余数与19×100,即与1900除以99所得的余数相同,因此所求余数是19.

  17.19941994…1994(1994个1994)除以15的余数是______.

  分析:法1:从简单情况入手找规律,发现1994÷15余14,19941994÷15余4,199419941994÷15余9,

  1994199419941994÷15余14,......,发现余数3个一循环,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400…0能被15整除,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4.

  18.a>b>c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c)×(a-b)×(b-c)除以11的余数是多少

  分析:(a+b+c)÷11的余数是7;(a—b)÷11的余数是1l+2—7=6;(b—c)÷11的余数是11+7—9=9.所求余数与7 6×9÷11的余数相同,是4.

  19.盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?

  分析与解答:

  如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.

  2 8 10 12

  2 4 5 6

  2 5 3

  故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.

  20.自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.

  分析与解答:

  设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+(90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.

  则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.

 

来源:本站原创

      欢迎访问奥数网,您还可以在这里获取百万真题,2023小升初我们一路相伴。>>[点击查看]

分类

专题

类型

搜索

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

本周新闻动态

重点中学快讯

奥数关键词

广告合作请加微信:17310823356

广告服务 - 营销合作 - 友情链接 - 网站地图 - 服务条款 - 诚聘英才 - 问题反馈 - 手机版

京ICP备09042963号-15 京公网安备 11010802027854号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数版权所有Copyright@2005-2021 新万博体育下载_万博体育app【投注官网】.