【答案】
分析 5个人排队一共有5×4×3×2×1=120种顺序,把所有情形的时间总和都计算出来,就太繁琐了.凭直觉,应该把打水时间少的人排在前面所费的总时间会省些.考虑用“逐步调整”法来严格求解.
解:首先证明要使所费总时间最省,应该把打水时间需1分钟的人排在第一位置.
假如第一位置的人打水时间要a分钟(其中2≤a≤5),而打水需1分钟的人排在第b位(其中2≤b≤5).我们将这两个人位置交换,其他三人位置不变动.这样调整以后第b位后面的人每人排队打水所费的时间与调整前相同,并且前b个人每人打水所费时间也未受影响,但是第二位至第b位的人排队等候的时间都减少了(a-1)分钟,这说明调整后五个人排队和打水时间的总和减少了.换言之,把打水需1分钟的人排在第一位置所费总时间最省.
其次,根据同样道理,再将打水需2分钟的人调整到第二位置;将打水需3、4、5分钟的人逐次调整到第三、四、五位.所以将五人按照打水所需时间由少到多的顺序排队,所费时间最省.这样得出5人排队和打水时间总和的最小值是
1×5+2×4+3×3+4×2+5×1=35(分钟).
说明:本题涉及到排序不等式,有兴趣的读者可参阅高年级的数学奥林匹克教材.排队提水的问题,在其他一些场合也是会遇到的.例如,有一台机床要加工n个工件,每个工件需要的加工时间不一样,问应该按照什么次序加工,才能使总的等待时间最短.
点击查看万博体育app::小学四年级数学简单的统筹规化问题
奥数网提醒:
小学试题、单元测试题、小学知识点
尽在奥数网公众号