【答案】
分析与解:从题设的条件分析,对所求五位数有两个要求:
①各数位上的数字之和等于43;
②能被11整除。
因为能被11整除的五位数很多,而各数位上的数字之和等于43的五位数较少,所以应选择①为突破口。有两种情况:
(1)五位数由一个7和四个9组成;
(2)五位数由两个8和三个9组成。
上面两种情况中的五位数能不能被11整除?9,8,7如何摆放呢?根据被11整除的数的特征,如果奇数位数字之和是27,偶数位数字之和是16,那么差是11,就能被11整除。满足这些要求的五位数是: 97999,99979, 98989。
编辑推荐:2019小学五年级数的整除问题练习汇总(1-100)
奥数网提醒:
小学数学试题、知识点、学习方法
尽在“奥数网”微信公众号