新万博体育下载_万博体育app【投注官网】

图片
奥数网
全国站

奥数 > 小学资源库 > 奥数知识点 > 数论问题 > 完全平方数 > 正文

数论之完全平方数练习5

2011-06-03 16:01:13      下载试卷

  数论之完全平方数练习5

  1、一个自然数减去45及加上44都仍是完全平方数,求此数。

  解:设此自然数为x,依题意可得

  x-45=m^2................(1)

  x+44=n^2................(2)(m,n为自然数)

  (2)-(1)可得 n^2-m^2=89, (n+m)(n-m)=89

  但89为质数,它的正因子只能是1与89,于是。解之,得n=45。代入(2)得。故所求的自然数是1981。

  2、求证:四个连续的整数的积加上1,等于一个奇数的平方。

  分析:设四个连续的整数为n,(n+1),(n+2),(n+3),其中n为整数。欲证

  n(n+1)(n+2)(n+3)+1是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

  证明:设这四个整数之积加上1为m,则

  m=n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2=[n(n+1)+(2n+1)]^2

  而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。这就证明了m是一个奇数的平方。

来源:南京奥数网

      欢迎访问奥数网,您还可以在这里获取百万真题,2023小升初我们一路相伴。>>[点击查看]

分类

专题

类型

搜索

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

本周新闻动态

重点中学快讯

奥数关键词

广告合作请加微信:17310823356

广告服务 - 营销合作 - 友情链接 - 网站地图 - 服务条款 - 诚聘英才 - 问题反馈 - 手机版

京ICP备09042963号-15 京公网安备 11010802027854号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数版权所有Copyright@2005-2021 新万博体育下载_万博体育app【投注官网】.