新万博体育下载_万博体育app【投注官网】

图片
奥数网
全国站

奥数 > 小学资源库 > 奥数知识点 > 数论问题 > 余数问题 > 正文

余数问题练习10

2011-06-03 11:41:17      下载试卷

  余数问题练习10

  1.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

  分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

  101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

  2.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.

  分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.

  3.除以99,余数是______.

  分析:所求余数与19×100,即与1900除以99所得的余数相同,因此所求余数是19.

  4.求下列各式的余数:

  (1)2461×135×6047÷11

  (2)19992000÷7

  分析:(1)5;(2)1999÷7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000÷3 余2 可以得到42000除以7 的余数是2,故19992000÷7的余数是2 .

来源:奥数网

      欢迎访问奥数网,您还可以在这里获取百万真题,2023小升初我们一路相伴。>>[点击查看]

分类

专题

类型

搜索

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

本周新闻动态

重点中学快讯

奥数关键词

广告合作请加微信:17310823356

广告服务 - 营销合作 - 友情链接 - 网站地图 - 服务条款 - 诚聘英才 - 问题反馈 - 手机版

京ICP备09042963号-15 京公网安备 11010802027854号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数版权所有Copyright@2005-2021 新万博体育下载_万博体育app【投注官网】.