新万博体育下载_万博体育app【投注官网】

图片
奥数网
全国站

奥数 > 小学资源库 > 奥数知识点 > 数论问题 > 完全平方数 > 正文

数论之完全平方数练习3(2)

2009-09-22 14:15:28      下载试卷

  1、一个自然数减去45及加上44都仍是完全平方数,求此数。

  解:设此自然数为x,依题意可得

  x-45=m^2; (1)

  x+44=n^2 (2)

  (m,n为自然数)

  (2)-(1)可得 :

  n^2-m^2=89或: (n-m)(n+m)=89

  因为n+m>n-m

  又因为89为质数,

  所以:n+m=89; n-m=1

  解之,得n=45。代入(2)得。故所求的自然数是1981。

  2、求证:四个连续的整数的积加上1,等于一个奇数的平方(1954年基辅数学竞赛题)。

  分析 设四个连续的整数为,其中n为整数。欲证

  是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

  证明 设这四个整数之积加上1为m,则

  m为平方数

  而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。这就证明了m是一个奇数的平方。

  3、求证:11,111,1111,这串数中没有完全平方数(1972年基辅数学竞赛题)。

  分析 形如的数若是完全平方数,必是末位为1或9的数的平方,即

  或

  在两端同时减去1之后即可推出矛盾。

  证明 若,则

  因为左端为奇数,右端为偶数,所以左右两端不相等。

  若,则

  因为左端为奇数,右端为偶数,所以左右两端不相等。

  综上所述,不可能是完全平方数。

  另证 由为奇数知,若它为完全平方数,则只能是奇数的平方。但已证过,奇数的平方其十位数字必是偶数,而十位上的数字为1,所以不是完全平方数。

  4、求满足下列条件的所有自然数:

  (1)它是四位数。

  (2)被22除余数为5。

  (3)它是完全平方数。

  解:设,其中n,N为自然数,可知N为奇数。

  11|N - 4或11|N + 4

  或

  k = 1

  k = 2

  k = 3

  k = 4

  k = 5

  所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。

  5、甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。为了平均分配,甲应该补给乙多少元(第2届“祖冲之杯”初中数学邀请赛试题)?

  解:n头羊的总价为元,由题意知元中含有奇数个10元,即完全平方数的十位数字是奇数。如果完全平方数的十位数字是奇数,则它的个位数字一定是6。所以,的末位数字为6,即乙最后拿的是6元,从而为平均分配,甲应补给乙2元。

 

来源:网络

      欢迎访问奥数网,您还可以在这里获取百万真题,2023小升初我们一路相伴。>>[点击查看]

分类

专题

类型

搜索

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

本周新闻动态

重点中学快讯

奥数关键词

广告合作请加微信:17310823356

广告服务 - 营销合作 - 友情链接 - 网站地图 - 服务条款 - 诚聘英才 - 问题反馈 - 手机版

京ICP备09042963号-15 京公网安备 11010802027854号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数版权所有Copyright@2005-2021 新万博体育下载_万博体育app【投注官网】.